3.577 \(\int \frac{(a+b \cos (c+d x))^3}{\sqrt{\cos (c+d x)}} \, dx\)

Optimal. Leaf size=116 \[ \frac{2 a \left (a^2+b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{6 b \left (5 a^2+b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 b^2 \sin (c+d x) \sqrt{\cos (c+d x)} (a+b \cos (c+d x))}{5 d}+\frac{8 a b^2 \sin (c+d x) \sqrt{\cos (c+d x)}}{5 d} \]

[Out]

(6*b*(5*a^2 + b^2)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*a*(a^2 + b^2)*EllipticF[(c + d*x)/2, 2])/d + (8*a*b^2
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(5*d) + (2*b^2*Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])*Sin[c + d*x])/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.176584, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2793, 3023, 2748, 2641, 2639} \[ \frac{2 a \left (a^2+b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{6 b \left (5 a^2+b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 b^2 \sin (c+d x) \sqrt{\cos (c+d x)} (a+b \cos (c+d x))}{5 d}+\frac{8 a b^2 \sin (c+d x) \sqrt{\cos (c+d x)}}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^3/Sqrt[Cos[c + d*x]],x]

[Out]

(6*b*(5*a^2 + b^2)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*a*(a^2 + b^2)*EllipticF[(c + d*x)/2, 2])/d + (8*a*b^2
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(5*d) + (2*b^2*Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])*Sin[c + d*x])/(5*d)

Rule 2793

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n)), x] + Dist[1/(d
*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d*(m + n) + b^2*(b*c*(m - 2) + a*d
*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n -
 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] ||
 (EqQ[a, 0] && NeQ[c, 0])))

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \cos (c+d x))^3}{\sqrt{\cos (c+d x)}} \, dx &=\frac{2 b^2 \sqrt{\cos (c+d x)} (a+b \cos (c+d x)) \sin (c+d x)}{5 d}+\frac{2}{5} \int \frac{\frac{1}{2} a \left (5 a^2+b^2\right )+\frac{3}{2} b \left (5 a^2+b^2\right ) \cos (c+d x)+6 a b^2 \cos ^2(c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{8 a b^2 \sqrt{\cos (c+d x)} \sin (c+d x)}{5 d}+\frac{2 b^2 \sqrt{\cos (c+d x)} (a+b \cos (c+d x)) \sin (c+d x)}{5 d}+\frac{4}{15} \int \frac{\frac{15}{4} a \left (a^2+b^2\right )+\frac{9}{4} b \left (5 a^2+b^2\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{8 a b^2 \sqrt{\cos (c+d x)} \sin (c+d x)}{5 d}+\frac{2 b^2 \sqrt{\cos (c+d x)} (a+b \cos (c+d x)) \sin (c+d x)}{5 d}+\left (a \left (a^2+b^2\right )\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx+\frac{1}{5} \left (3 b \left (5 a^2+b^2\right )\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{6 b \left (5 a^2+b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a \left (a^2+b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{8 a b^2 \sqrt{\cos (c+d x)} \sin (c+d x)}{5 d}+\frac{2 b^2 \sqrt{\cos (c+d x)} (a+b \cos (c+d x)) \sin (c+d x)}{5 d}\\ \end{align*}

Mathematica [A]  time = 0.352705, size = 84, normalized size = 0.72 \[ \frac{2 \left (5 a \left (a^2+b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+3 \left (5 a^2 b+b^3\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+b^2 \sin (c+d x) \sqrt{\cos (c+d x)} (5 a+b \cos (c+d x))\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^3/Sqrt[Cos[c + d*x]],x]

[Out]

(2*(3*(5*a^2*b + b^3)*EllipticE[(c + d*x)/2, 2] + 5*a*(a^2 + b^2)*EllipticF[(c + d*x)/2, 2] + b^2*Sqrt[Cos[c +
 d*x]]*(5*a + b*Cos[c + d*x])*Sin[c + d*x]))/(5*d)

________________________________________________________________________________________

Maple [B]  time = 3.181, size = 376, normalized size = 3.2 \begin{align*} -{\frac{2}{5\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -8\,{b}^{3}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+ \left ( 20\,a{b}^{2}+8\,{b}^{3} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) + \left ( -10\,a{b}^{2}-2\,{b}^{3} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +5\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{3}+5\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) a{b}^{2}-15\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}b-3\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{3} \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x)

[Out]

-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*b^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+(
20*a*b^2+8*b^3)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-10*a*b^2-2*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2
*c)+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^3+
5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2-15
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-3*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3)/(-2*si
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right ) + a^{3}}{\sqrt{\cos \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**3/cos(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)